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Flux to a Trap 

Robert  M. Z i W  

The flux of particles to a single trap is investigated for two systems: (1) particles 
in 3D space which jump a fixed step length l (the Rayleigh flight) and are 
adsorbed by a spherical surface, and (2) particles on a lattice, jumping to 
nearest neighbor sites, with a single adsorbing site. Initially, the particles are 
uniformly distributed outside the traps. When the jump length goes to zero, 
both processes go over to regular diffusion, and the first case yields the diffusive 
flux to a sphere as solved by Smoluchowski. For nonzero step length, the flux 
for large times is given by a modified form of Smolucbowski's result, with the 
effective radius replaced by R-cl ,  where c = 0.29795219 and cl is the Milne 
extrapolation length for this problem. For the second problem, a similar 
expression for the flux is found, with the effective trap radius a function of the 
lattice (sc, bcc, fcc) being considered. 

KEY WORDS: Diffusion; trapping; random walks. 

1. I N T R O D U C T I O N  

The de t e rmina t ion  of  the flux of  par t ic les  diffusing toward  an adso rb ing  
surface or  a t rap  lies at  the founda t ion  of the theory  of aggrega t ion  and  
chemical  kinetics. In  the classic p r o b l e m  cons idered  by Smoluchowski ,  (~1 
the flux to a spherical ,  perfectly adso rb ing  surface is ca lcula ted  by solving 
the diffusion equat ion,  using the b o u n d a r y  cond i t ion  p ~ 0 and the ini t ial  
cond i t ion  tha t  the par t ic les  are  uni formly  d is t r ibu ted  outs ide  the sphere 
with densi ty  Po. The result  is (I-3) 

R 
qS( t )=4r tRDpo(1 - t  (Tt ~ ) 1 / 2  ) ( I )  
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where D is the diffusion coefficient and R is the radius of the sphere. This 
result, however, is not valid in two limits: for times of the order of, or less 
than, the fundamental time scale ~ of the diffusing particle (the typical time 
for the particle to reverse its direction), and for R of the order of, or 
smaller than, the corresponding diffusion length scale l. In these limits (1) 
is not valid because the diffusion equation is not applicable. 

In this paper, we study corrections to (1) for two systems in which l 
is of order R: (1) a system of particles which jump a fixed step length l but 
arbitrary direction in a three-dimensional (3D) continuum (the "Rayleigh 
flight"), and are adsorbed on a spherical trapping surface of radius R, and 
(2) particles on a lattice which hop to nearest-neighbor sites, adsorbed by 
a single trapping site. In both cases the particles jump in a discrete time 
interval r. These models were chosen because they correspond to the way 
diffusion is often carried out in computer simulations, and it is desirable to 
know what deviations from true Brownian motion result from their use. 

The problem we consider is closely related to some classical problems 
in physics. Particles undergoing physical diffusion can be modeled as an 
Ornstein Uhlenbeck (OU) process, described by the Fokker-Planck equa- 
tion. (4) The problem of finding the flux to an adsorbing boundary in this 
case is an old and well-studied one, (5 9) and exact results have recently been 
found. (1~ A related problem is that of solving the neutron transport 
equation in the presence of an adsorbing boundary, first considered by 
Milne.~12 14) 

For  the continuum Rayleigh flight problem, we find that (1) is 
replaced by 

I R, 1 q~(t) = 4 z R ' D p o  1 + (~ Dt)l /5 + C(t  3/2) (2) 

where D = 12/6~, R '  - R - cl, and c ~ 0.29795219, valid for 0 < l ~< 2R. The 
(_9(t -3/2) term also depends upon l /R, and disappears in the limit I / R - ~  O. 
When l is of the order of R, (2) predicts that there will be a significant 
change in the flux, both in the time-dependent part and the steady-state 
value. The distance /~ = el is the "Milne extrapolation length ''~8'13'14) and 
represents the distance inside the surface where the far steady-state solution 
p(r )  = po(r - R + [l)/r extrapolates to p = 0. 

For  particles hopping to a single adsorbing site on a 3D lattice, we 
show that (2) also obtains, but with R' proportional to the lattice spacing l. 
The value of the proportionality constant depends upon the lattice being 
considered. We consider the simple cubic (sc), body-centered cubic (bcc), 
and face-centered cubic (fcc) lattices. We also briefly consider 1D and 2D 
systems. 
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2. T H E  R A Y L E I G H  F L I G H T  

In this model, the particles jump a fixed distance l in a discrete time 
step r, as illustrated in Fig. 1. We will assume that l ~  2R. The probability 
density p(r, t) satisfies the discrete-time Markov equation 

p(r, t + r) = f W(r I r ') p(r', t) dr '  (3) 

where W(r [ r ') is the jump probability from r' to r in time z and is given 
by 6 ( [ r - r ' [ - l ) / 4 ~ z l  2. The initial condition is p(r, 0 ) = p o  for r>R,  and 
p(r, 0) = 0 for r ~< R, and the boundary condition is p(r, t) = 0 for r ~ R and 
all t, where r = Ir]. 

Because of the spherical symmetry of the initial and boundary condi- 
tions, we need only be concerned with how the radial component of the 
position of a particle changes when it jumps. In the Appendix, we show 
that (3) implies that f(r,  t) = rp(r, t) satisfies 

Lfr+l 
f(r,  t + r ) = 2 /  pr_trf(r', t) dr' (4) 

Thus f is formally the solution to a one-dimensional problem in which a 
particle jumps uniformally within the interval + l (when r > l). The function 
f(r, t) satisfies the boundary condition f(r,  t ) =  0 for r ~< R, and the initial 
condition 

~por, r > R 
f(r, O) = ~0, r <~ R (5) 

To find the flux of particles into the sphere, we assume that a particle 
is adsorbed if its final radial distance after a jump falls within R, but that 
the particle remains free if the trajectory passes through the sphere and 
ends up outside of it, as illustrated in Fig. 1. (We call the latter grazing 

Fig. 1. The Rayleigh flight being intercepted by a spherical trap. In path (a), the particle is 
adsorbed because its final position is in the sphere. Path (b) shows a grazing trajectory, and 
(except in the discussion in Section 4) we assume that these particles are not adsorbed. 
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trajectories.) In the Appendix, we show that the expression for the flux is 
then given by 

7"C ~R+l 
[R 2 - (r' - / ) 2 ]  f(r', t) dr' (6) 

When f(r, t) changes slowly over distances of length l and times of 
duration r, (4) goes over to the diffusion equation with D = 12/6~. We note 
that in the classical derivation of the diffusive flux to a sphere, it is also 
useful to introduce the same function f(r, t), which formally reduces the 
problem to one-dimensional diffusion. (1) When the diffusion equation is 
used, the flux at the spherical boundary is determined by 4~RZD(Op/#r)R = 
4nD[r(Of/~r) --f iR. 

It is convenient to introduce x=-(r-R)/l, T- t /z ,  and F(x ,T) -  
f (R + lx, Tz), where T =  1, 2, 3 ..... Then (4)-(6) become 

1 fx+l  
F(x ,T+I)=~3 x , F(x',r)dx' (7) 

F(x, O) = po(lx + R) (8) 

4rtRD I I 1 �9 [ ( T +  1)r] =- - -~- -  a( T) --R b( T) (9) 

where 

a (T)=  3 (1-x)F(x ,  T)dx (10a) 

b(T)  = (1 - x)  2 f ( x ,  T) dx (10b) 

and F(x, T)=  0 for x < 0. In (9) we have introduced D = 12/6~. 
Next, we separate F into two parts, 

F(x, t) = po[lF(l~(x, t) + RF(2I(x, t)] (11) 

which satisfy the initial conditions 

F(l~(x, 0 ) = x  [i.c. (1)] (12a) 

f(2)(x, 0)=  1 [i.c. (2)] (12b) 

This decomposition of F is useful because it allows us to consider (7) with 
these two dimensionless boundary conditions, rather than with (8). The 
flux is given by 
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~(Tz)  = po[l~(1)(T) + R~(2)(T)] 

F 4~RDpo k r + 7 

= 4r~RDpo[a(~)(T) - (I/R) b(*)(r) + (R/I) a(2)(T) - b(2~(T)] (13) 

where r176 = a(O(T) - (I/R) b(~ for i= 1, 2. 
In summary, F(l)(x, T) and F(2)(x, T) follow iteratively for T= 1, 2 .... 

from (7) and the initial conditions (12), and the flux follows from (13). The 
results for the first three interations of this procedure for i.c. (1) are 

1 
r =~ (1 - - ~ / )  

F(l)(x , 1 ) = ~ ( l + 2 x + x 2 ) / 4 ,  0 < x < l  
(x,  1 < x 

r = ]-~ 1 - - -  
55 

(! + 12x + 6x2)/24, 
F~l)(x, 2) = + 12x+ 6x2-x3) /24 ,  

# ' ( 3 ) = ~  1 18o 

((60 + 100x + 42x 2 + 4x 3 - x4)/192, 
~(73 + 92x + 48x 2 - 8x3)/192, F(1)(x, 3) 
}(81 + 84x+ 54x 2 -  12x 3 + x4)/192, 
/ kx, 

0 < x < l  
l < x < 2  
2 < x  

O < x < l  
l < x < 2  
2 < x < 3  
3 < x  

(14a) 

151( 4 . 3 9 1 / )  
~b(1)(4) =1--~ 1 35. 151 

and those for i.c. (2) are 

3 ( 1 _ 1  

(1 + x)/2, 
F~2)(x, 1)= 1, 

(14b) 

(14c) 

(14d) 

(14e) 

(14f) 

(14g) 

(15a) 

O < x < l  
(15b) l < x  

(15c) 

822/65/5-6-25 
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f(3 + 4x)/8, 

F(2)(x, 2) = ~(4 + 4x - x2)/8, 

(1, 

O < x < l  

l < x < 2  

2 < x  

,3(, 
r = 16 \ 

(15 + 21x + 3X 2 - -  X3)/48, 

+ 27x - 9x 2 + x3) /48 ,  

(1, 

0 < x < l  

l < x < 2  

2 < x < 3  

3 < x  

(15d) 

(15e) 

(l 5f) 

r = ~ 7 96 (15g) 

In the limit of I/R small and n large, we expect (13) to go over to (1). 
For that to occur, we must have r 1 and r (6/rcT)l/2. Clearly, 
many more time steps are needed to find how the r deviate from this 
behavior for l >~ R. In the next section, we develop recurrence relations that 
allow the coefficients to the expression for the flux to be determined by a 
simple numerical procedure. 

We note that the piecewise behavior of the F(~ t) is reminiscent of 
Rayleigh's solution for the probability distribution of the position of a 
single particle following the same walk, as discussed by Chandrasekhar. (2) 
In fact, that problem can also be treated by the procedure given here, 
changing only the initial and boundary conditions. 

3. N U M E R I C A L  S O L U T I O N  

We define F~(x, t) (k - - l ,  2, 3,...) as the functional form of F in the 
interval ( k -  1)< x < k. Equation (7) implies that the Fk satisfy 

Fk_ l(X', T) dx' + Fk(x', T) dx' Fk(x, T+ 1 ) = ~  -1 1 

1 fx+l + 2 k Fk+l(x',  T) dx' (16) 

where Fo(X, t)= O. Next, we expand each of the Fk as a power series in 
(k -  x): 

Fk(x, T)=  ~ Fk, (T)(k-x)  i (17) 
i = 0  
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(This form leads to much simpler relations than a power series in x.) 
Inserting (17) into (16), we find the following simple recurrence relations 
for the Fki: 

1 
F k i ( T + l ) = ~ i i [ F k  ~,~ I (T ) -Fk+I , i_ I (T)]  ( i > 0 )  (18a) 

1 
Feo(T+ 1) = ,~o 2(i + 1) [Fk"(T) + t~+ l,,(T)] (18b) 

where Fo.i( t)=0.  To calculate the flux, (9)-(10) is used with F(x, T) 
replaced by F~(x, T), leading to 

a ( T ) = 3  ~ F~(T) (1%) 
i=o ( i + 2 )  

3 ~ F,,(T) 
b ( T ) = ~  ,_. ( i + 3 )  (19b) 

i = 0  

In terms of the Fki, the two initial conditions (12) become 

F~)(0) = 1, i =  1 (20a) 

i > 1  

1, i = 0  (20b) 
g~)(0) = O' i > 0  

for all k = 1, 2, 3 ..... 
Thus we have reduced the problem of finding the time-dependent den- 

sity profile to solving the set of recurrence formulas (18) for the coefficients 
F~)(T) and F~)(T), starting with the initial values in (20). Once these coef- 
ficients are found, the flux is calculated from (13) and (19). This procedure 
is easily programmed on a computer, and in Table I we give the some of 
the resulting values of the coefficients a(T) and b(T)/a(T) for times up to 
T=60 .  Calculations were carried out in standard double-precision (16 
significant digits). Analyzing these coefficients numerically, we find the 
following asymptotic expressions: 

a~l~(T) = 1 - b(2)(T) (21a) 

b(1)( T)/a(l)(T) = c -scdT-3/2  + C(T-  2) (21b) 

a(2)(T) = sT -1/2 + (s/20) T -3/2 + C(T -5/2) (21c) 

b(Z)(T)/a(2)(T) = c + dT -1 + C(T 2) (21d) 
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Table  I. Va lues of the  Coef f ic ien ts  in the  Flux (32) ,  for  T ime  up to 60T 

T a(1)(T) b I1)(T)/a (1)(T) a(2)(T) b~2)(T)/a(2)(T) 

1 0,500000 0.250000 1.50000 0.333333 
2 0.687500 0.290909 1.00000 0.312500 
3 0.750000 0.294444 0.812500 0.307692 
4 0.786458 0.295932 0.700000 0.305060 
5 0.810417 0.296582 0.624479 0.303586 
6 0.827800 0.296952 0.569048 0.302612 
7 0.841133 0.297181 0.526177 0.301926 
8 0.851784 0.297335 0.491733 0.301416 
9 0.860544 0.297444 0.463275 0.301023 

10 0.867914 0.297525 0.439248 0.300709 
20 0.907272 0.297812 0.309800 0.299317 
30 0.924467 0.297878 0.252737 0.298859 
40 0.934664 0.297905 0.218784 0.298631 
50 0.941603 0.297918 0.195636 0.298495 
60 0.946717 0.297927 0.178554 0.298404 

where c=0.29795219,  d=0.0270103,  and s=(6/7z) 1/2, To arrive at these 
results, various considerations were used. The identity in (21a) was 
observed to always hold, and a l though unproven,  is undoubtedly  true. 
The leading coefficient of (21c) is the value needed to recover (1) in the 
diffusive limit, and was verified numerically to six significant digits. The 
second term was found to be s/20 to six significant figures, and we guess 
that  it is exact. Both (21b) and (21d) were found to have the same leading 
behavior,  the constant  c. Note,  however, that  in (21b), the first correct ion 
is of order  T -3/2, while in (21d), it is of order T -1. 

Put t ing the results (21) into (13), we find after some algebra 

~b(t) = 4 : r R D p o [ ( R -  cl)/R + (6/TzT) 1/2 ( R -  c l ) 2 / R l  ~ - (_~(T-3/2)] (22) 

and replacing 12/6z by D and R - cl by R', we are led to the result (2). The 
(_9(t -3/2) term in (2), after more  algebra, is found to be given by 

1 (6"] 1/2R'' (~)3/a zc ( 1 ) 2 (  R" )3 
\ ~ J  - T  = ] - ~  T (~t ~ J  (23) 

where R " - R - ( c  + 4 0 d ) / ~  R -  1.3781. This term goes to zero as (I/R) 2 for 
I ~ 0 with R, D, and t fixed. 
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4. A D D I T I O N A L  C O M M E N T S  ON THE RAYLEIGH PROBLEM 

There are many additional points that can be made about this model, 
which we briefly summarize here. 

t. The steady-state distribution. In steady state the solution rapidly 
approaches F(x, oo)= x + c for large x. For  x near 0, the density deviates 
from this straight line with oscillating behavior, as shown in Fig. 2. In con- 
trast, the deviations for the OU particles are monotonic and negative. (8 lo) 
As x ~ 0 ,  the density approaches F(0 +, oo)=0.408245 or p ( r ) =  
0.408245pol/R. [The time-dependent approach to the steady-state value is 
given by F(0 +, T),-~ 0 .408 -  0.17T-~/z. ] Thus, the density of particles at an 
adsorbing boundary does not go to zero, except in the limit of l ~ 0. 

The steady-state solution can be found efficiently by using F(x, O)= 
x + c = F~1)(x, O) + cF~2)(x, 0) as the initial condition in place of (11); then, 
the final steady-state solution is approached very quickly. For  example, 
b(T) /a (T )  = c +  C ( T - S n ) .  Using this result, we were able to determine the 
accurate value of c given above, and to deduce that the coefficient of the 
first-order correction term of (21b) is given by - s c d .  Note that in steady 
state, (18a) becomes a recurrence relation for Fki(oo). 

The behavior of the steady state can also be investigated by noting 
that F(x, oo)=  e ..... is a solution to the integral equation (7) if w satisfies 

sinh w = w (24) 

Besides the trivial solution w = 0 corresponding to a constant F, there are 
solutions on the complex w plane. Writing w = u + iv, we find u and v 

9.12 

0.! 

0.08 

0.06 

0.04 

0.02 

0 

-0.02 
0 0.5 1 i. 

i i i i 

5 2 2.5 3 3.5 

Fig. 2. The deviation in  the steady-state density from the long-distance behavior h(x)= 
F(x)-x-c,  on a highly expanded scale. The actual density is found from p(r)=p0{r- R + 
c/+ H~E(r- R)//)] }/r. 
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satisfy u =  sinh u cos v, v = cosh u sin v, from which v can be eliminated 
and then u solved for. The first few solutions with the lowest values 
of u are w=+2.76867828• +3.35220988+13.89995971i, 
+ 3,71676768 _+ 20.23851771i, and • 3.98314164 + 26.55454727i. A linear 
combination of solutions with positive and negative v--both with positive 
u so that the function decays in the positive x direction--yields a sol~ation 
with damped sinusoidal behavior F(x, o r ) =  e -u~ cos(vx). However, these 
solutions only satisfy (7) for x >  1, beyond the influence of the boundary 
condition. A linear combination is needed to solve (7) for x < 1 also. We 
have not carried out such an analysis, but note that the dominant behavior 
is determined by the first root, which has an oscillation wavelength of 
2rc/7.49767628 = 0.83801768 and rapid decay, consistent with the behavior 
seen in Fig. 2. 

2. The diffusion-equation approach. A number of years ago, Collins 
and co-workers (15 18) studied the flux using a hybrid approach in which the 
diffusion equation is assumed to be valid everywhere outside the trap, but 
the boundary condition is modified to 

(~P )  = p ( R )  (25) 
"Y ~ r=R 

to account for the kinetic boundary layer. The constant ? must be deter- 
mined by empirical arguments. The solution for an internal spherical 
boundary is given by (15) 

q5 = 47rR'Opo[ l + (R'/~) exp(Dt/fl 2) erfc(Ot/fl2) in ] 

47zR'Dpo[l + R'(Tr Ot) -~/2 - (7t/2) R'/?z(Tr Dt) -3n . .  .] (26) 

as t ~  0% where/3 = 7/(1 + 3,/R) and here R ' =  R - / 3  = R/(1 + 7/R). Various 
prescriptions have been discussed to determine 7 (15 18); however, to lowest 
order, they generally give the same result 7 = (//3)[1 + (9(~)], which implies 
R ' / R = l - ( 1 / 3 ) e + ( 9 ( ~ 2 ) ,  where e=_I/R. When ~ is small, the difference 
between our expression for the flux and the one found above (asymptoti- 
cally for large times) is just that our constant c is replaced by 1/3 here. In 
fact, the Collins-Kimball approach can be "fixed" to give the correct flux 
for Rayleigh-flight particles [up to (9(t-3/2)] if ~ is taken to be c l / (1 -  c~). 

3. Continuous-time formulation. In a continuous-time formulation of 
this problem, the particles jump with an exponentially-distributed waiting 
time with mean 1/r. The jump length is still assumed to be fixed at I. The 
density fc(r, t) = rpc(r, t) satisfies (15) 

~fc.(r,t) l f c ( r , t ) +  1 (r+Z 
•t z ~ ~1~ th f,.(r', t) dr' (27) 
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The solution of (27) is related to the discrete-time density f ( r ,  t) by 

f~(r, t )=e  '/~ 
(t/z)" 

m=o m!  f ( r ,  rnz) (28) 

since, when (28) is inserted into (27), f ( r ,  t) is found to satisfy (4). The 
fluxes are related to each other in a similar way as in (28). It can be shown 
that if the discrete-time flux is given by (2), then the continuous-time flux 
will be identical in the zeroth and first orders, and only the C(t -3/2) (and 
higher-order) terms will differ. Thus, (2) is valid in a continuous-time 
Rayleigh walk system as well. 

4. Grazing trajectories. So far, we have ignored grazing trajectories. 
In the Appendix, we show that such trajectories contribute the following 
term, in addition to (6), to the flux: 

f (R2+12)1/2 [ l - - (r '2-RZ)l /Z]2f(r  ', t) dr' (29) ~g( t  + ~) = ~ ~,~. 

While including adsorption of grazing trajectories will make the time 
evolution much more complicated, since these particles must be subtracted 
from the density distribution, we can get an idea of their importance by 
considering the first time-step only, where f ( r ,  O) = po r. Then, (29) gives 

OSg( Z ) = rr RZ po( l/r )( ~2/12 ) (30) 

In contrast, (6) gives [see (13), (14a), and (15a)] 

q~(v ) = ~R2po( I/r )(1 - e2/12) (31) 

Thus, the effect of the grazing term is of second order in e, compared to the 
leading term in r 

It is interesting that (30) exactly cancels out the second-order term in 
(31), so that their sum is simply qs(r)=rcR2po( l / r ) .  The same expression 
follows from a simple kinetic theory calculation, since 4~zR 2 is the surface 
area and l/2~ is the average normal component of the velocity of the par- 
ticles moving toward the surface, which comprise half of the particles in the 
system. This argument, however, assumes that the surface is flat. The above 
calculation shows that this expression remains valid for a spherical surface 
as well, when the grazing trajectories are included in the flux. 

5. FLUX FOR D I F F U S I O N  ON A LATTICE 

Here we briefly consider the problem of the flux where the diffusing 
particles are jumping from site to neighboring site on a lattice at each unit 
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time step. The trap is a single adsorbing site, and the initial condition is a 
uniform distribution of particles outside the trap with concentration unity. 
The flux ~b T is equivalent to the number of possible paths from all sites to 
the trap, such that the paths arrive at the trap for the first time at time T, 
multiplied by the weight of each path ( l /Z)  r, where Z is the coordination 
number of the lattice. Reversing the time, it can be seen that the number 
of these paths is the same as the number of paths that leave the trap and 
never return during T time steps. Thus, we can write q~r= 1 - ~ f = l ~ . ,  
where fj  is the probability of first return in j time steps. The generating 
function of ~b r is then 

�9 (z)- ~ zTCT 
T - - I  

1 -F(z)  1 
- 1-----2--~z - (1  -z)  P(z) ( 3 2 )  

where F(z)= Y'.~=l z~.  In the last expression, we used F(z)= 1 -  1/P(z), 
where P(z) - ~f~= ~ zJpj and pj is the probability of return to the origin at 
j time steps, irrespective of whether it had been there before. (~9) Note that 
(32) is quite similar to the expression for the generating function S(z) of 
the number of distinct sites sT visited at time step T:S(z)= 
1 / [ ( 1 - z )  2 P(z)]. (2~ This relation implies ~br=sr - - s r_~ .  Note also that 
fT = --~br+ ~br_ ~. 

For a 1D lattice, we have p2n=2 2n(2~), implying P(z )=  ( 1 - z 2 )  -1/2 
and thus q~(z)= (1 + z ) ( 1 - z 2 )  -1/2, which implies that ~b2n = ~bzn + 1 = P2n. 
The latter result implies the asymptotic behavior Or,~2(D/TrT)~/2, where 
D = 1/2 is the diffusion coefficient in 1D for a system with l = 1 and r = 1. 
Indeed, this flux is identical to the (complete) expression for the flux 
calculated from diffusion equation in a 1D system in which particles are 
being adsorbed on both sides of the trap (the factor of 2 in ~br above). 

For a 2D square lattice, pzn=4-2n(2n) 2 and P(z)~ - ( 1 / r t ) l n ( 1 - z ) ,  
implying ~br~n/ln T. Higher-order terms 
methods of ref. 21, yielding 

can be deduced using the 

1 7z2/6 2~(3) ) (33) 
~bv~Tz in(8T)+7 [ ln (8T)+7]  3 [ l n (8T)+y]  4 " 

where (here) 7 = 0.55721... is Euler's constant. There are correction terms of 
order 1/(Tln T) to (33). Comparison to the solution to the 2D diffusion 
equation with an adsorbing disk, (22) 

1 1 3 

(gr~4~zpoDIln(4Dt-fR2)_7+O(ln(4DtfR2)_7) ] (34) 
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yields D=1/4 ,  as expected for a 2D system with l = l  and r = l ,  and 
R = e-~8 ~/2~ 0.1985. The latter gives the effective size of the sphere of 
influence of the trap, in units of the lattice spacing. If one thinks of the 
problem as one in which all particles and the trap are spheres of the same 
size, then the radius of those spheres will be R/2, a number much smaller 
than the lattice spacing. 

In 3D, the asymptotic behavior of P(z) is well known for the sc, fcc, 
and bcc lattices/2~ For the sc lattice, for example, we find 

1 33/2 
qS(z) 

P(1)(1 - z )  ~- 21/21rP(1) 2 (1 - z )  1/2 
+ (35) 8 ~ m 

as z ---, 1, where P(1) = 1.5163860592, implying 

1 / 27 ,~1/2 1 
~ b r ~ p _ _ ~ + ~ 2 ~  ) p(1)___~+(9(r 3/2) (36) 

This result can be written in the form of (2), yielding R ' =  1/[4~DP(1)] = 
0.31487 and D = 1/6, which is in accord with the formula D = 12/6~. This 
value of R' gives the effective size of the trap, in units of the lattice spacing. 

A similar calculation for the bcc lattice yields D = l / 2  and 
R'= 1/[4~DP(1)] =0.11424, using the known value of P(1). This value of 
D is in accord with the formula 12/6~ because here the nearest neighbors 
are diagonal segments of length l =  ~ from the corners to the center of 
the unit cube (whose side is of length 2). The effective size of the particle 
R' is 0.11424 of the lattice spacing (unity), or 0.06596 of the jump length l. 
For the fcc lattice, where nearest neighbors are along diagonals on the face 
of the cube and are a distance l =  x/2 apart, we have D = 1/3 and R'= 
1/[4~DP(1)]=0.31487=0.22265l. That (2) holds for all these lattices 
implies that there is a general connection between the first-order term in 
the expansion of P(z) for z ~ 1, and the nearest-neighbor spacing. 

Thus, for diffusion on a lattice, a trap is effectively a sphere with a 
radius that is much smaller than the lattice spacing. A consequence of this 
is that the trapping probability for particles on a lattice is much less than 
it would be in a continuum, for particles whose size is the same as the 
spacing of the lattice. On a lattice, a particle near a trap has a much higher 
probability of escaping--by making a big jump away from the trap--than 
if the particle were in a continuum. 

Finally, we discuss briefly a generalization to the case where the par- 
tictes are undergoing persistent motion. We consider a 1D lattice of unit 
spacing with a trap at the origin, in which the diffusing particles continue 
in the same direction with probability 1 - y ,  and reverse direction with 
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probability y - - so  that the velocity, rather than the position, is a Markov 
process. When y =  1/2, the standard random walk considered above is 
recovered. The mean square displacement of a particle in T time steps is 
given by (23) 

_ 1 - 2y 
((Ax) 2) = l +--~y 2 [ 2 y T -  1 + (1 - 2 y )  r]  ,(37) 

which implies D = ( 1 - y ) / 2 y .  The flux at time 2n is given by ~b2,= 
(1 -Y)P2,/Y, where Pzn is the return probability, and for large T, 

,/2 1 1 - - 1 ) +  "' '1 (38) ~br~ 2 (2(1-----Y!~ I1 - - > ( 2 y ( 1  
\ ,~yT / - y) 

(The correction term above is valid for even T only.) The leading term 
agrees with the flux calculated from the 1D diffusion equation, ~br= 
2(D/rcT) 1/2. When y--+0 and T--+ oo such that yT is a constant, the 
particles move at constant speed and reverse directions after traversing an 
exponentially distributed distance. 

6. C O N C L U S I O N S  

Thus, we have found that (2) is a general form for the flux to a trap 
in 3D for two different kinds of random walk processes. In (2), the same 
constant R' appears in both the steady-state and first-order terms. The 
generality of (2) can be understood by observing that the diffusion equa- 
tion will be essentially valid far from a trap where the density of particles 
varies slowly with time and position. The net effect of the trap is therefore 
reduced to knowing its effective radius R' or the Milne extrapolation 
length. For the case of the Rayleigh flight, we have found this length 
numerically. Perhaps an analytic solution for this problem can be found--  
as has been done for the case of O U  particles. (8'9) 

When diffusion is simulated by a Rayleigh flight, it follows from (2) 
that significant errors will be introduced in the trapping probability unless 
l/R ~ 1. Practically, however, making l so small generally slows down a 
simulation severely. A practical solution to this problem is to make the 
jump length depend upon the distance to the nearest trap. (24'25) On the 
lattice, the error in the trapping probability can be corrected to some 
degree by making the probability of jumping to a site dependent upon 
whether that site is bordering a trap. 

For future work, it would be interesting to study the behavior when 
the jump length is not constant, especially when the variance is infinite (the 
L6vy flight). 
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A P P E N D I X  

We define P(r, t ) d r  =- 4rcr2p(r, t )d r  as the probabil i ty that  a particle 
falls within the radial shell (r, r + dr) about  the origin. P satisfies 

P(r, t + z) = f w(r j r') P(r', t) dr' (At )  

where w ( r l r ' ) d r = t h e  probabil i ty of a particle jumping from radial 
distance r '  to the interval (r, r +  dr) in one step. First consider the case 
that l ~  r'. F r o m  Fig. 3, one can see that w is given by 

w(r I r') dr-- 
surface area in region (r, r + dr) 

total  surface area of sphere 

2 r d s i n 0 1 d 0  1 
- s i n 0 d 0  (A2) 

4~zl 2 2 

Now,  by the law of cosines, r 2 = ( r ' ) 2 + 1 2 - 2 r ' l c o s O ,  and for fixed r', 
2r dr = 2r'l sin 0 dO or sin 0 dO = r dr/(r'l). Thus, 

r d r  
w ( r t r ' ) d r = 2 r , l  I r ' - l l < r < ( r ' + l )  (A3) 

as given by Collins and Kimball. t151 The absolute value bars above make 
this expression valid for l > r '  also. Then, inserting (A3) into (A1) and 
introducing f ( r ,  t) = P(r, t)/4rcr, one finds the kinetic equat ion (7). 

We note that  w is properly normalized: 

.r" +l ~ l  ~r' +l 
w(r r') d r=  r d r=  l 

J It ' -  II ~lr'- II 
(A4) 

O r '  

r + d r  

Fig. 3. A particle jumping from point A, at a distance r' from the origin, lands anywhere 
on the surface of the sphere of radius l with equal probability. Equation (A2) gives the 
probability that the particle is on that part of the spherical surface whose radial distance from 
the origin falls in the interval (r, r + dr). 



1232 Ziff 

by 
The flux of particles whose final radial distance falls within R is given 

qS(t + z) = -  dr' drw(r  r ' ) P ( r ' , t )  
"C 

- dr' f ( r ' ,  t)  dr r 
lT~ ~ R  [r' l[ 

~r f '~R + l =l-z [ R 2 - ( r ' - l ) 2 ] f ( r  ', t) dr' (A5) 

where we have assumed l~< 2R. (When l >  2R, the bracketed term in the 
last integral above must be replaced by zero whenever its value becomes 
negative.) For  the adsorption ot grazing trajectories, the flux contains the 
following additional term: 

qDg(t+'C) 1 [  'R2+ z2)'~2 f~~ = - dr' dr w(r [ r') P(r', t) 
"C ~ R  

2zc f(  R2 + 12)1,.2 
=-~v -R dr' f ( r "  t) f2 ~ r 

7"C r '  ( R2 + 12)b,2 
= - -  | E l -  (r '2 - R 2 ) 1 / 2 ]  2 f ( r ' ,  t) dr' (a6)  

lz ~R 

where the maximum value of r '  for a grazing trajectory to occur is 
( R  2 q_ /2 )1 /2 ,  and r 0 defined by r 2 = R 2 + [ - l -  ( r  '2 - -  R 2 ) 1 / 2 ]  2 is the maximum 

radial distance of the final position of a grazing trajectory for a particle 
jumping from radial distance r '  from the origin. 
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